
Assessment of Applying the PMaC Prediction

Framework to NERSC-5 SSP Benchmarks
Summer 2006

Author: Noel Keen

Introduction
NERSC procurement depends on application benchmarks, in particular the NERSC SSP.

Machine vendors are asked to run SSP benchmarks at various scales to enable NERSC to

assess system performance. However, it is often the case that the vendor cannot run the

benchmarks at large concurrency as it is impractical to have that much hardware

available. Additionally, there may be difficulties in porting the benchmarks to the

hardware.

The Performance Modeling and Characterization Lab (PMaC) at San Diego

Supercomputing Center (SDSC) have developed a framework to predict the performance

of codes on large parallel machines. The goal of my work for NERSC was to apply the

PMaC prediction framework to the NERSC-5 SSP benchmark applications and ultimately

consider the accuracy of the predictions. Other tasks included identifying assumptions

and simplifications in the process, determining the ease of use, and measuring the

resources required to obtain predictions.

The primary goal of the PMaC framework is to assess machine hardware for

procurement. Using the PMaC prediction framework, we wish to predict full-scale

benchmark performance on target machines using available hardware. First, tracing data

is collected from full-scale runs on existing Alpha processor based machines. This data

is then combined with raw system measurements of the target machine using memory

and network bandwidth benchmark kernels, which do not require a large machine.

Finally, the PMaC framework is used as a machine simulator to make predictions about

application performance on target machines. This simulator could also be used to change

certain machine parameters to answer “what-if” questions for alternative machine

configurations.

PMaC Framework Overview

Currently, vendors port benchmarks and full application codes to new machines and

report results. Large applications can be difficult to port and vendors may not have a

large-scale machine ready for benchmarking. Instead, the PMaC framework would only

require that vendors run small kernel benchmarks (to measure memory and network

bandwidth) on the target machines and do larger simulation calculations on other

available machines. The collected data could also be useful for identifying gross

bottlenecks such as network latency, L1 cache misses, and main memory bandwidth

saturation. The profiling information is at the basic block level.

The PMaC framework is a collection of tools in C, Perl, Python, and shell scripts. It is

also a process that must be followed carefully. The framework is automated in the sense

that it requires only minor application code modifications, however there are many steps

that must be completed and these are not currently automated. The framework is capable

of collecting detailed serial and parallel communication tracing information about the

application codes. A commercial software package maintained by CEPBA (Centro

Europeo de Paralelismo de Barcelona) is required to use the PMaC framework. In

particular the mpidtrace library is used to collect detailed information from every MPI

message passed through the network during application execution. Dimemas is a

network simulator from CEPBA that is used by the PMaC framework to make the final

predictions.

Target Machines
The machines of which a prediction is desired must be determined. The target machines

for this study were:

1) bassi.nersc.gov (P5)

2) IBM POWER5+ system

3) Seaborg.nersc.gov (P3+)

4) Jacquard.nersc.gov (Opteron)

5) Dual-Opteron system

6) Davinci.nersc.gov (Itanium2)

7) SGI system

NERSC-5 SSP Benchmarks
The applications which will be used to benchmark the target machines must be

determined, as well as the concurrency.

NERSC-5 SSP Benchmarks
Benchmark Size num procs

Medium 56cam31

Large 240

Small 4

Medium 64

Milc

Large 256

Small 4

Medium 64

Gtc

Large 256

Small 4Paratec

Medium 64

Large 256

Small 4

Medium 64

madbench

Large 256

Small 4

Medium 64

Pmemd

Large 256

The gamess application was not considered in this work because it uses LAPI, which

does not work with mpidtrace (CEPBA are working on a version of tools to support

LAPI). Gamess can use MPI, but the performance is poor.

(http://www.nersc.gov/projects/ssp.php/)

PMaC Framework Outline
An outline of the PMaC framework steps:

1) Obtain cache system data for all target prediction machines

2) Memory operations collection. Involves the metasim tracer (semi-cycle accurate

simulator) collects memory references, floating-point operations

3) Network performance data collection. CEPBA tools collect detailed data for each

MPI call.

4) Measure latency and bandwidths of machine on a few CPU’s.

a) MAPS – Memory Access Pattern Signature – memory bandwidth

b) netbench -- measure network bandwidth and latency

5) Convolving and parameter sensitivity studies

Memory operations collection
The PMaC framework requires all target applications to run full-scale on a machine with

Alpha processors. Therefore, the NERSC-5 applications were ported and run on

Lemieux at Pittsburg Supercomputing Center, which is a 750-node Compaq ES45 with 4-

way 1-GHZ ev68 processors. The framework makes use of the ATOM toolkit which

contains a binary rewriter and is only available on Alpha processors. The PMaC team is

developing a binary rewriter for IBM processors.

The framework breaks up the data collection into serial tracing and communication

tracing. The serial tracing still requires the application to be run at the various scales of

interest, but the data collected is only memory references and floating point instructions,

ignoring network communication. This serial tracing is what must be done on the Alpha

processors of Lemieux.

There are 3 calls that must be added to the source of each application which allow the

framework to know exactly the beginning and end of the code to be analyzed as well as

the process ID. Each application executable must be instrumented using ATOM, which

produces another executable. ATOM enables profiling at the basic block level. Each

application at each size is then run twice (pass 1 and pass 2) with the binary-instrumented

executable. The data is collected on a per-processor basis, i.e. a 64-way run would output

64 trace data files. The first pass is to obtain .ijbb files which contain fundamental

information for each basic block, sorted by the number of times the block is executed.

Then each .ijbb file is processed (using ATOM) to obtain .jbb and .badbb files (again, for

each processor of a given run). The .badbb files contain a list of the basic blocks of the

code that issued a large amount of memory references (above some threshold). These

basic blocks will be analyzed further. The full application is then run again using a new

binary-instrumented executable. This is the step in which the target machine cache

information is used; it is built into the executable and will simulate each cache system.

The result is a .imt file for every processor which is post-processed to obtain a

.systemXX file, where XX is the target machine ID. For this work, there were 6 systems,

so there were 6 output files for each processor, for each application and size combination.

Note that there are actually 7 target machines, but because the two Opteron machines

have the same cache structure (as specified to the framework), this system only needed to

be traced once. The differences between these two Opteron targets would be contained in

the MAPS measurements described below.

For the serial tracing, the PMaC framework represents each target machine as a very

simplified cache system. To illustrate, consider this example cache structure data that

represents the machine bassi.nersc.gov, which has IBM P5 cores:

• L1 buffer size: 32 KB

• L1 associativity: 4 way

• L1 line size: 128 B

• L2 buffer size: 960 KB

• L2 associativity: 10 way

• L2 line size: 128 B

• L3 buffer size: 36 MB

• L3 associativity: 12 way

• L3 line size: 256 B

There are some important assumptions regarding this simplified cache system

representation. For the cache buffer and cache line sizes, only floating-point data is

considered, i.e. instruction and integer data is ignored. The buffer sizes are per core and

the effects of sharing are ignored. A node with an L3 buffer size of 400MB shared

among 4 CPU’s would be simulated as 4 CPU’s each with an independent L3 buffer size

of 100MB. There is also a flag named “random_replacement” that can be true or false.

Instructions from the PMaC team were to set this flag to false for all machines except the

IBM POWER3. One difficulty in obtaining this data was that the NERSC-5 vendor data

was incorrect regarding the details of the cache system in two places.

The MetaSim tracer is a semi-cycle accurate simulator that collects data for each basic

block, utilizing statistical sampling. The data collected includes the number of

executions, number of memory references, number and type of Floating-Point operations,

a stride analysis, cache hit rate for each level of cache, branch intensity, number of

TLB’s. For each memory references, the tracer determines if it was a stride one access,

stride two access, up to stride 64. Strides above 64 were considered random. In

determining the stride values, the tracer stores the last 2048 addresses. Events such as

TLB misses and memory prefetch are counted, but are not currently used in the

simulation.

Communication operations collection
Seaborg was chosen to collect the parallel communication tracing data using the CEPBA

tools. To use the CEPBA tools, each hostid requires a license. The first step is to link

each application with the mpidtrace library and run full-scale. Linking with this tracing

library should not change the behavior of the code, however the cam benchmark failed to

execute properly. The exact location of the failure was located and reported to CEPBA.

The issue was not resolved. Data is collected for every MPI call, therefore the tracing

overhead (run-time and data storage) will be largest for those applications with many

MPI calls. The next step is to use the tool mpi2trf to post-process all of the data files

(one for each processor) into a single trace file (note: for some application runs, this was

a large file). The final step would be to use Dimemas. This work does not include any

Dimemas simulation as this is part of the Convolving step that the PMaC team was

working on. Inputs to Dimemas include on-node and off-node bandwidth values, as well

as on-node and off-node latency values. Note that one value is used to represent each of

these measurements. There is also a parameter “number of buses” which was

“determined by experience”; for Seaborg the value was 6.

Disk I/O modelling
To model application disk I/O, the mpidtrace library requires a system library on IBM

systems named DPCL. On both Seaborg and Bassi, DPCL was not working and problem

tickets were sent to IBM. Therefore a static version of mpidtrace was obtained from

CEPBA to use on Seaborg and we simply ignored I/O. PMaC is working on better ways

to model I/O. The madbench application, largely an I/O benchmark, would not be

expected to yield accurate prediction results because of the large percentage of time spent

in I/O.

Computing resources required by PMaC framework
The computing resources required to collect tracing data was substantial (See Figure 1).

Figure 1. Runtimes of Various Steps (hours)

The file storage needs for this work are 1 GB total for all MetaSim tracing and about 300

GB for all mpidtraces that were successfully performed. Recall the cam application

could not be run using mpidtrace. Also, the large (256-way) paratec benchmark was not

traced with mpidtrace as the predicted file storage required was 3 TB and the predicted

runtime was about 24 hours. The decision was made to continue prediction work with all

other application-size pairs and, if successful, return to the large paratec run at a later

date. The mpi2trf step, which combines data files into on large trace file is a serial

process and can take more than 12 hours, even on bassi, which is an IBM POWER5

machine.

Obtain memory and network speeds of target machines
Before beginning the convolving step, a few basic hardware measurements are obtained

using small benchmark kernels on each target machine. MAPS (Memory Access Pattern

Signature) is used to measure memory bandwidth (for L1, L2, and main memory) for

several buffer data sizes and at stride one and random stride access patterns. Netbench is

used to measure the latency and network bandwidth of a few CPU’s of the target

machine. The values of interest are on-node and off-node bandwidth and latency

measurements. As described above, Dimemas uses only one value for each, for example

the values for Seaborg are off-node: 317 MB/s (max), 29 !s (typical) and on-node: 406

0

2

4

6

8

10

12

14

gtc64

gtc256

paratec64

paratec256

m
ad64

m
ad256

pm
em

d64

pm
em

d256

cam
56

cam
240

m
ilc64

m
ilc256

seaborg mpidtrace

lemieux pass1

lemiuex serial

lemieux pass2

bassi mpi2trf

MB/s (max), 10 !s (typical). MAPS and netbench must be run on each target machine

under consideration.

For each machine, the MAPS and netbench measurements only need to be collected once.

Most of this step is completed as PMaC already has a database of machine data. Various

versions of the MAPS kernel were run on NERSC machines and results were reported to

PMaC.

Summary
In summary, the Metasim tracer was used to collect data for six NERSC-5 applications

on Lemieux. Mpidtrace was used to collect communication data for five NERSC-5

applications on Seaborg. Hardware data was obtained using MAPS and netbench for

NERSC machines. A directory was created on the NERSC global filesytem (NGF) to

store the data and be accessible to the PMaC team. We are currently waiting for analysis

by PMaC.

No prediction results have been made for the N5 applications on any target machines. As

far as I know, the progress on this effort is the same as it was last summer (2006) and the

remaining work was to be completed by the PMAC group at SDSC. My primary

interaction was with Allan Snavely and Laura Carrington at SDSC.

Some of the complications experienced while using the framework were:

1) Difficult to obtain accurate cache system data for new machines

2) Also newer machines can be difficult to access, which is required to runs MAPS

and netbench.

3) All applications must be ported and run on Alpha processor machine

4) All applications must be run at full scale multiple times (at least twice for memory

tracing and once for communication tracing)

5) Requires commercial network package, which did not always work properly

(failed with the cam benchmark and had other difficulties)

6) The method requires multiple steps and there is no way to verify that each step

was completed properly

7) Some parameters to be used as input to the convolving step were not easily

determined.

8) Resources required to collect and process tracing data was significant

Conclusions

The PMAC framework is intended to predict system performance without

actually running the benchmark codes on the target systems by using

memory & communication trace data collected from the code combined

together with a high-level memory trace and interconnect simulation of the

target machine architectures. The goal of the project was to see if the PMAC

framework was capable of correctly predicting the performance of the

NERSC SSP benchmarks on existing machines and also machines that had

been bid for NERSC-5The benchmark data for the NERSC-5 procurement

was not shared with us so as not to bias the study and to comply with NDA

requirements.

It is the conclusion of this study that the amount of work required to use the

PMAC framework far exceeds that required to simply run the application

benchmarks on the target architectures. This is true both in terms of human

resources to collect the data and run various components of the framework

and in terms of total computational resources required to run the framework.

It does not reduce the effort required by vendors or by the procurement team

to compare systems as far as we were able to determine.

The framework is not capable of predicting the performance of systems that

are larger than those used to collect the data. That is to say, you cannot use

data collected from a 128-way example run on a smaller system to predict

performance for much larger concurrencies. This is also one of the key

impediments to system assessment during procurements, which is not solved

by the PMAC prediction model.

Finally, the framework does not account for differences in compiler

performance on different systems. For example, the code generated by the

pathscale compiler on the 2.2Ghz opteron processors of jaquard can be up to

30% faster than code generated by the PGI compiler for the much faster

2.6Ghz processors of the jaguar system at ORNL. The framework only does

memory traces of the code as compiled on a single system, without regard to

the differences in prefetch strategies emitted by different proposed

compilers. This can also result in significant performance differences

between prediction and reality that are not treated by the framework.

PMAC has since abandoned this framework and has moved to a new

f r a m e w o r k f o r p e r f o r m a n c e p r e d i c t i o n (

http://www.sdsc.edu/pmac/projects/index.html). The differences between this

and the older framework are significant enough to render our old work

obsolete at this point in time. Further progress on this evaluation would

entail dropping all of the currently collected data and starting over again

with the new framework.

!"#$%&'()*(+($,-.

!"#$%&'(#')*"#+%#,-*.%$'"(/"#+0"#,11)1+,.-"#%2#3',.#4.,5"'6#,.(#7,&8,#9,88)./+%.#

%2#+0"#:;,9#/8%&<#,+#4=49#2%8#,''#%2#+0")8#,11)1+,.-"#).#-%.2)/&8)./#+0"#28,>"$%8*#

,.(#-%''"-+)./#(,+,?##@0"#$%8*#$,1#<"82%8>"(#&.("8#=ABC7DE7#-%.+8,-+#.&>F"8#

DE-AC02-05CH11231.

!/,0%1.!223'34,3%$.

@0"#,&+0%8#$%8*1#2%8#+0"#3<<')"(#E&>"8)-,'#3'/%8)+0>1#G8%&<#H3E3GI#).#+0"#

9%><&+)./#J"1",8-0#=)5)1)%.#%2#7,$8".-"#D"8*"'"6#E,+)%.,'#7,F%8,+%86?##@0"#$%8*#

$,1#()8"-+"(#,.(#2&.("(#F6#+0"#EBJ49#9".+"8#=)5)1)%.#%2#7DE7#,1#<,8+#%2#+0"#

EBJ49KL#:8%-&8">".+?#

